Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 71(6): 1479-1495, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34716463

RESUMO

An important mechanism of oncolytic virotherapy in ameliorating cancer immunotherapy is by inducing significant changes in the immune landscape in the tumor microenvironment (TME). Despite this notion and the potential therapeutic implications, a comprehensive analysis of the immune changes in carcinomas induced by virotherapy has not yet been elucidated. We conducted single-cell RNA sequencing analysis on carcinomas treated with an HSV-2-based oncolytic virus to characterize the immunogenic changes in the TME. We specifically analyzed and compared the immune cell composition between viral treated and untreated tumors. We also applied CellChat to analyze the complex interactions among the infiltrated immune cells. Our data revealed significant infiltration of B cells in addition to other important immune cells, including CD4+, CD8+, and NK cells following virotherapy. Further analysis identified distinct subset compositions of the infiltrated immune cells and their activation status upon virotherapy. The intensive interactions among the infiltrated immune cells as revealed by CellChat analysis may further shape the immune landscape in favor of generating antitumor immunity. Our findings will facilitate the design of new strategies in incorporating immunotherapy into virotherapy for clinical translation. Moreover, the significant infiltration of B cells makes it suitable for combining virotherapy with immune checkpoint inhibitors.


Assuntos
Carcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Imunoterapia , Vírus Oncolíticos/genética , Análise de Sequência de RNA , Microambiente Tumoral
2.
Mol Ther Oncolytics ; 23: 330-341, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34786476

RESUMO

The oncolytic effect of virotherapy derives from the intrinsic capability of the applied virus in selectively infecting and killing tumor cells. Although oncolytic viruses of various constructions have been shown to efficiently infect and kill tumor cells in vitro, the efficiency of these viruses to exert the same effect on tumor cells within tumor tissues in vivo has not been extensively investigated. Here we report our studies using single-cell RNA sequencing to comprehensively analyze the gene expression profile of tumor tissues following herpes simplex virus 2-based oncolytic virotherapy. Our data revealed the extent and cell types within the tumor microenvironment that could be infected by the virus. Moreover, we observed changes in the expression of cellular genes, including antiviral genes, in response to viral infection. One notable gene found to be upregulated significantly in oncolytic virus-infected tumor cells was Gadd45g, which is desirable for optimal virus replication. These results not only help reveal the precise infection status of the oncolytic virus in vivo but also provide insight that may lead to the development of new strategies to further enhance the therapeutic efficacy of oncolytic virotherapy.

3.
Mol Ther Oncolytics ; 22: 98-113, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34514092

RESUMO

Oncolytic virotherapy has produced promising yet limited results in preclinical and clinical studies. Besides direct oncolytic activity, a significant therapeutic mechanism of oncolytic virotherapy is the induction of tumor-specific immunity. Consequently, the efficacy of oncolytic viruses can be improved by the insertion of immune stimulator genes and rational combinatorial therapy with other immunotherapies. This article reviews recent efforts on arming oncolytic viruses with a variety of immune stimulator molecules, immune cell engagers, and other immune potentiating molecules. We outline what is known about the mechanisms of action and the corresponding results. The review also discusses recent preclinical and clinical studies of combining oncolytic virotherapy with immune-checkpoint inhibitors and the role of oncolytic virotherapy in changing the tumor microenvironment.

4.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230110

RESUMO

BACKGROUND: Although oncolytic virotherapy has shown substantial promises as a new treatment modality for many malignancies, further improvement on its therapeutic efficacy will likely bring more clinical benefits. One plausible way of enhancing the therapeutic effect of virotherapy is to enable it with the ability to concurrently engage the infiltrating immune cells to provide additional antitumor mechanisms. Here, we report the construction and evaluation of two novel chimeric molecules (bispecific chimeric engager proteins, BiCEP and trispecific chimeric engager protein, TriCEP) that can engage both natural killer (NK) and T cells with tumor cells for enhanced antitumor activities. METHODS: BiCEP was constructed by linking orthopoxvirus major histocompatibility complex class I-like protein, which can selectively bind to NKG2D with a high affinity to a mutant form of epidermal growth factor (EGF) that can strongly bind to EGF receptor. TriCEP is similarly constructed except that it also contains a modified form of interleukin-2 that can only function as a tethered form. As NKG2D is expressed on both NK and CD8+ T cells, both of which can thus be engaged by BiCEP and TriCEP. RESULTS: Both BiCEP and TriCEP showed the ability to engage NK and T cells to kill tumor cells in vitro. Coadministration of BiCEP and TriCEP with an oncolytic herpes simplex virus enhanced the overall antitumor effect. Furthermore, single-cell RNA sequencing analysis revealed that TriCEP not only engaged NK and T cells to kill tumor cells, it also promotes the infiltration and activation of these important immune cells. CONCLUSIONS: These novel chimeric molecules exploit the ability of the oncolytic virotherapy in altering the tumor microenvironment with increased infiltration of important immune cells such as NK and T cells for cancer immunotherapy. The ability of BiCEP and TriCEP to engage both NK and T cells makes them an ideal choice for arming an oncolytic virotherapy.


Assuntos
Anticorpos Biespecíficos/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Simplexvirus/efeitos dos fármacos , Humanos , Simplexvirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...